翻訳と辞書
Words near each other
・ Diagnostic microscopy
・ Diagnostic odds ratio
・ Diagnostic peritoneal lavage
・ Diagnostic program
・ Diagnostic robot
・ Diagnostic substitution
・ Diagnostic test
・ Diagnostic wax-up
・ Diagnosticos da America
・ Diagnostics of Karma
・ Diago
・ Diagonal
・ Diagonal argument
・ Diagonal band of Broca
・ Diagonal butterflyfish
Diagonal form
・ Diagonal formula
・ Diagonal functor
・ Diagonal intersection
・ Diagonal lemma
・ Diagonal magic cube
・ Diagonal Mar i el Front Marítim del Poblenou
・ Diagonal matrix
・ Diagonal method
・ Diagonal mirror
・ Diagonal Norte (Buenos Aires Underground)
・ Diagonal pliers
・ Diagonal relationship
・ Diagonal spread
・ Diagonal subgroup


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Diagonal form : ウィキペディア英語版
Diagonal form

In mathematics, a diagonal form is an algebraic form (homogeneous polynomial) without cross-terms involving different indeterminates. That is, it is
:\Sigma a_i ^m\
for some given degree ''m'', summed for 1 ≤ ''i'' ≤ ''n''.
Such forms ''F'', and the hypersurfaces ''F'' = 0 they define in projective space, are very special in geometric terms, with many symmetries. They also include famous cases like the Fermat curves, and other examples well known in the theory of Diophantine equations.
A great deal has been worked out about their theory: algebraic geometry, local zeta-functions via Jacobi sums, Hardy-Littlewood circle method.
==Examples==
:X^2+Y^2-Z^2 = 0 is the unit circle in ''P''2
:X^2-Y^2-Z^2 = 0 is the unit hyperbola in ''P''2.
:x_0^3+x_1^3+x_2^3+x_3^3=0 gives the Fermat cubic surface in ''P''3 with 27 lines. The 27 lines in this example are easy to describe explicitly: they are the 9 lines of the form (''x'' : ''ax'' : ''y'' : ''by'') where ''a'' and ''b'' are fixed numbers with cube −1, and their 18 conjugates under permutations of coordinates.
:x_0^4+x_1^4+x_2^4+x_3^4=0 gives a K3 surface in ''P''3.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Diagonal form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.